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1 Introduction 

This report summarizes calculations done about two years ago to look at two dif- 
ferent orbit correction schemes for the Main Injector. The first correction scheme 
considers information from the two beam position monitors (bpm) placed at 
focussing and defocussing quadrupoles while the second scheme considers infor- 
mation from the bpm at only defocussing quadrupoles. The obvious advantages 
of the one bpm per cell compared to the two bpms per cell are less cost, and 
less noise introduced in the system from the electronics. However the one bpm 
per cell scheme provides less information about the beam and can be a prob- 
lem in detecting any instabilities in the beam. This calculation follows Chao’s 
and Peggs paper [l] and is based on a simple FODO cell with one corrector per 
plane and two bpms per plane. In each case the rms correctors strength and rms 
orbit errors are calculated using the method of least square minimization. To 
better qualify the correction scheme orbit errors at focussing and defocussing 
quadrupoles are calculated separately. Different types of orbit error sources 
are considered. These errors can be due to quadrupoles and monitors mis- 
alignements, dipole roll error in the vertical plane, and dipole field error in the 
horizontal plane. Results obtained for the correctors strength are in agreement 
with Rod Gerig’s results [a]. 

2 Theory 

Calculations in this paper are based on the theory of orbit correction using 
localized orbit bumps [3]. C onsider a simple lattice made of FODO (Focussing 
Quad-Drift-Defocussing Quad-Drift) cells. Let the vector Sd(n) describes the 
initial distorted orbit where 11 represents the number of monitors. An orbit 
correction vector fe(tz) is added to the vector Zd(n) such that the norm squared 
of the vector I] zd+z, 1) 2 is minimized. This method is known as the method of 



least squares. The orbit correction vector 2, is related to the corrector strength 
vector by: 

xc = TZ (1) 
where T is an n x m matrix and m is equal to the number of correctors. In 
general the elements of the matrix T are given by: 

Tij = gCOSU(*T+4i-oj) 

where u is the betatron wave number, j3 is the betratron frequency and YC$ is 
the betratron phase. The plus sign in front of ?r is used for the case where 
+i < dj and the minus sign for the case & > 4j. With localized orbit bumps 
the elements of matrix T take the simpler form of: 

qj-1 = 
J&dipi-’ 

(3) 

Tili = d& 
(4 

Ti,i+1 = (5) 

(6) 

where: 

di,j = (7) 

The closed bump is located at the i- th monitor. The least square minimization 
condition leads to a corrector stength vector given by: 

(8) 

2.1 Two BPMs versus One BPM Correction Scheme 

With the two bpms per cell correction scheme bpm at each focussing and de- 
focussing quadrupole provides readings in both planes horizontal and vertical. 
For each plane, therefore, there are one corrector and two bpms per cell. The 
one bpm per cell correction scheme has for each plane one corrector and one 
bpm per cell. A descriptive representation of each case is given in the Fig 1. 

The matrix T described in the previous section was derived using informa- 
tion from the two bpms per cell per plane. With the one bpm per plane the 
information from the bpms at, defocussing quaclrupoles is not available for the 
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Figure 1: Illustrating two bpms and one bpm correction schemes 

calculation of the beam bump corrector strength in the horizontal plane. In- 
stead of matrix T the strength of the corrector vector is now calculated using a 
new matrix T’ that has the form: 

(9) 
TV, = O.eslsewhwere (10) 

where di,j is as described earlier. The information from the bpm at defocussing 
quadrupoles has been omitted by assigning zero to that element. The case when 
information from focussing quadrupoles, where correctors are located, is omitted 
does not make sense and will lead to a singularity problem. The orbit correction 
vector ZC is now calculated using the new matrix T’. 

3 Results 

Different types of orbit error sources, as mentionned in the introduction, are 
considered. The following typical rms values for the Main Injector are selected: 

w Quadrupole displacements (both focussing and defocussing) of 0.250 mm 
(rms). 

l Beam monitor displacement of 0.250 mm (rms). 

l Dipole field error of 5 x 10m4. 

l Dipole roll error of 0.250 mrad (rms). 

The cell length is taken as 34.3 m, the phase advance per cell as 90”, the number 
of dipoles per half cell as 2, and the total number of dipoles as 300 resulting 
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in a bending angle L’I~ = 41.8 nwad per half cell. A program called ORBIT- 
2BPM/lBPM was developed to compute the rms corrector strength for each 
unit error source. 

3.1 The Two BPMS Case 

Each source of error will contribute to the total rms corrector strength and the 
total rms corrected orbit according to the following equations: 

< e2 >112 = {(1.00)2 < (bff/f)2 > +(0.389)2 < (6xqd/f)2 > (11) 

+2(0.742)2 < 6; > +(0.02112)2 < 6x&, > +(0.00775)2 < 6x;,, >}li2 

< x2 >112 = $ {(o.oo)2 < (6xd,/f)2 > +(4.66)2 < (6xgd/f)2 > (12) 

+2(4.66)’ < 6; > +(0.370)2 < 6x$,, > +(o.929)2 < ax&, >}li2 

The factor -$ appearing in (12) is because the total number of bpms is twice 
the total number of correctors and the total number of focussing or defocussing 
quadrupoles ‘. The constant coefficients in the above equations represent the 
squared sum of all the corrector strength for each unit of error and the squared 
sum of the corrected orbit for each unit of error type considered. To better eval- 
uate the correction scheme the rms error orbit and corrected orbit are separated 
in two parts: a summation over bpms at focussing quads only and a summation 
over bpms at defocussing quads only. Results are shown in Tables 1 and 2 2. 

3.2 The One BPM Case 

Here we consider information from only one bpm per plane. The coefficients 
of the equations describing the total rms corrector strength and the total rms 
corrected orbit are now given by: 

< e2 p.112 = {(1.00)2 < (6Xd,/f)2 > +(0.4142)2 < @x&)2 > (13) 

+2(0.7654)2 < 6; > +(0.02415)2 < 6x;,,,, > +(0.0000)2 < 6x;,, >}1’2 

< x2 >I/2 = 5 {(o.oo)2 < (6Xdj/f)2 > +(5.0231)2 < @x&f)2 > (14) 

+2(5.0231)2 < S; > +(0.4142)2 < 6x&, > +(1.0000)2 < Sx&, >}1’2 

Results are given Tables 3 and 4 

‘In [I] this factor was omitted 

znns in tables stands for 
J- 

cf” zf 



4 RMS Correctors Strength and Orbit Distor- 
tion 

The rms corrector strength and orbit distortion for each correction scheme are 
calculated using equations (13) and (14). Th e rms corrector strength for each 
type of error source is calculated separately and the total result given. This 
allow us to determine the dominant source of error in calculating the corrector 
strength. Results similar to the previous case are shown in Tables 5 and 6. 

5 Conclusions 

The following observations can be finally made. 

l The two BPMs/cell correction scheme gives a better orbit correction at 
focussing quadrupoles (where correctors are located) than at defocussing 
quadrupoles 

l The one BPM/cell gives a perfect orbit correction at focussing quadrupoles 

l At defocussing quadrupoles the one BPM/cell correction scheme is worse 
by about 20% than the two BPMs/cell scheme 

l Overall the rms closed orbit distortion with one BPM/cell correction 
scheme is worse by about 9.5% than the two BPMs/cell scheme. 

References 

[l] Alexander W. Chao and Steve Peggs, SSC-48, October 1985. 

[2] Rod Gerig, MI-U&?& August 1990. 

[3] Steve Peggs, Ph. D. Thesis, Cornell University, 1981. 

5 



Source of Error 

1 mrad angular kick @ FQ 
1 mrad angular kick @ DQ 

1 mrad kick error @ FQ- 

f%m, (mrad) x$-y (mm) x;~y”‘““( mm) 
1.000 208.570 0.000 
0.389 86.287 1.667 

’ D&FQ .DQ 0.742 159.79 1.667 
1 mrad kick error @ 0.742 159.79 1.667 

1 mm BPM displacement @ FQ 0.0211 1.00 0.164 
1 mm BPM displacement @ DQ 0.00775 0.00 0.332 

Table 1: Two BPMs case: Summing over BPMs @ focussing quads 

Table 2: Two BPMs case: Summing over BPMs @ defocussing quads 

Table 3: One BPM case: Summing over BPMs @ focussing quads 
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II Source of Error e,,, (mad) xpxy (?7m?l) x;gyy mm) 
1 mrad angular kick 0 FQ 0.0 I 86.093 I o.oon 

, angular DQ 
-_ . . . ___- 

1 mrad kick @ 0.0 35.43 5.023 
1 mrad kick error @ FQ-DQ 0.0 65.768 5.023 
1 mrad kick error @ DQ-FQ 0.0 65.768 5.023 

1 mm BPM displacement @ FQ 0.0 0.00 0.414 
L 1 mm BPM @ displacement DQ 0.0 1.00 1 .ooo 

Table 4: One BPM case: Summing over BPMs @ defocussing quads 

Source of Error Horizontal Corrector &ad) Vertical Corrector 
Misalignment of FQ 20.6154 20.6154 
Misalignment of DQ 8.0399 8.0399 

Dipole roll 0.0000 7.78525 
Dipole field error 15.5705 0.0000 

Misalignment of BPMS 5.6234 5.6234 

II I I 
Total strength 27.6351 24.1219 H 

Table 5: Two BPMs case: Correctors strength 

Table 6: Two BPMs case: Orbit distortion 

Table 7: One BPM case: Correctors strength 
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Table 8: One BPM case: Orbit distortion 
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